• Kurs
  • Startgaranti
  • Sertifisering
  • Om oss
    • Betalingsbetingelser
    • Privacy Policy
  • Kontakt oss
  • Handlekurv
    • Min konto
  • Kurs
  • Startgaranti
  • Sertifisering
  • Om oss
    • Betalingsbetingelser
    • Privacy Policy
  • Kontakt oss
  • Handlekurv
    • Min konto

Kurs

Hjem Kurs HPE_HJ7H2S HPE Ezmeral ML OPs

    HPE_HJ7H2S HPE Ezmeral ML OPs

    This course is for developers who create and run machine
    learning applications on HPE Ezmeral Container Platform
    5.3. The course teaches how to deploy clusters and provide
    real-life prediction analysis for specific use cases. The course
    consists of 30% lecture and 70% lab exercises.

    • Share:
    • Beskrivelse
    • Tilleggsinformasjon

    COURSE OBJECTIVE:
    During this course, you will learn how to:

    • Set up the project repository

    • Create a training cluster

    • Create a Jupyter notebook and attach it to a

    training cluster

    • Run through an example of a typical machine

    learning workflow

    • Operationalize your model

    • Make a prediction (inference)

    • Obtain in-depth knowledge of HPE Ezmeral

    Container Platform 5.3 ML Ops

    • Apply best practices to help accelerate

    the development of user-based prediction

    analysis

     

    TARGET AUDIENCE:
    System developers, big data application
    developers, business analysts, data
    scientists, data engineers.

    COURSE PREREQUISITES:
    • AI/ML application administration
    experience (Spark, Jupyter Notebook,
    Tensorflow, etc.) • Experience in machine learning lifecycle
    (e.g. model training/development and
    model deployment) • Bash/shell/python scriptin

    COURSE CONTENT:
    HJ7H2S (hpe.com)
    Machine Learning Ops Overview • Creating an ML Ops tenant

    • External authentication

    • Project repository

    • Source control

    • Model registr

    • Training

    • Deployments

    • Data sources

    • App store

    • Notebooks HPE

    Personas Overview • Platform administrator (site
    administrator)

    • Project administrator

    • Project member

    Project Repository Setup • Initial access to HPE Ezmeral
    Container Platform

    • Setting up ML Ops environment and project repository

    • ML Ops clusters

    Training Cluster Setup • Creating a training cluster

    • Training cluster configurations

    • Training cluster

    • Spark training

    • Accessing Python training cluster outside of HPE

    Ezmeral Container Platform

    • General notes on training clusters

    Notebook Setup • Creating a notebook cluster

    • Notebook cluster configuration

    • More details on notebooks on ML Ops

    • Create notebook with training cluster

    • Review

    • Training first model

    Model Registry and Deployment • Model registry

    • Model registry configurations

    • More details on model registry

    • Deployments (Method 1)

    • Deployments (Method 2)

    • Deployments clusters

    • Register and deploy the model

    Inference • “Ready” deployment cluster

    • Doing inference

    • Walkthrough of scoring script

    • Local notebook to ML Ops training cluster

    Lab 1: Initial Access to HPE Ezmeral Container

    Platform • Task 1: Initial log-on to HPE Ezmeral Container
    Platform

    Management Console

    • Task 2: Lab system setup

    • Task 3: Initial log-on to controller

    Lab 2: Setting Up ML Ops Environment and

    Project Repository • Task 1: Set up the ML Ops environment

    • Task 2: Install and register app from App Catalog

    • Task 3: Setup the project repository

    Lab 3: Create Training Clusters • Task 1: Create training
    cluster

    Lab 4: Create Notebooks with Training Cluster • Task 1:
    Create notebook with training cluster

    Lab 5: Training First Model • Task 1: Login to Jupyter hub •
    Task 2: Training the model

    Lab 6: Register and Deploy the Model • Task 1: Register the
    model • Task 2: Deploy the model

    Lab 7: Inference • Task 1: Generate prediction requests

    Lab 8: Local Notebook to ML Ops Training Cluster • Task 1:
    Making required file configurations

    • Task 2: Accessing training cluster through Jupyter
    Notebook

    • Task 3: Training the model through local notebook

    Lab 9: Spark Deployment • Task 1: Setup Spark deployment
    environment

    • Task 2: Stopping cluster in AIML tenant

    • Task 3: Create Spark training cluster

    • Task 4: Create Spark notebook cluster

    • Task 5: Train the used car pricing model

    • Task 6: Register new model

    • Task 7: Deploy the model

    • Task 8: Inference

    FOLLOW ON COURSES:
    Not available. Please contact.

    Tilleggsinformasjon

    Varighet

    1 dag(er)

    Språk

    Engelsk/Norsk kursmateriell, Engelsk/Norsk kursholder

    Sted

    Virtuelt (90% av våre kurs blir tatt opp)/Vi setter opp kurs over hele landet

    Generic selectors
    Exact matches only
    Search in title
    Search in content
    Post Type Selectors
    Opplæring og sertifisering

    SG Partner AS er en ledende leverandør av et bredt spekter av opplæring og sertifisering innen Microssoft, Cisco, Prince2, Citrix, Veeam og mange flere

    • Kurs
    • Startgaranti
    • Sertifisering
    • Om oss
      • Betalingsbetingelser
      • Privacy Policy
    • Kontakt oss
    • Handlekurv
      • Min konto
    • Kurs
    • Startgaranti
    • Sertifisering
    • Om oss
      • Betalingsbetingelser
      • Privacy Policy
    • Kontakt oss
    • Handlekurv
      • Min konto
    • Epost: kurs@sgpartner.no
    • Tlf.: +47 918 34 713
    • © 2025 All rights Reserved.
    • SG Partner AS , Org. nr. 923475532