• Kurs
  • Startgaranti
  • Sertifisering
  • Om oss
    • Betalingsbetingelser
    • Privacy Policy
  • Kontakt oss
  • Handlekurv
    • Min konto
  • Kurs
  • Startgaranti
  • Sertifisering
  • Om oss
    • Betalingsbetingelser
    • Privacy Policy
  • Kontakt oss
  • Handlekurv
    • Min konto

Kurs

Hjem Kurs GK110001 Amazon SageMaker Studio for Data Scientists

    GK110001 Amazon SageMaker Studio for Data Scientists

    NOK 32.000

    Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.
    Course level: Advanced
    Duration: 3 days

    Activities
    This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.

    Nullstill
    -
    +
    • Share:
    • Beskrivelse
    • Tilleggsinformasjon

    COURSE OBJECTIVE:
    In this course, you will learn to:

    • Accelerate the process to prepare, build, train, deploy, and monitor ML solutions using Amazon SageMaker Studio

     

    TARGET AUDIENCE:
    Experienced data scientists who are proficient in ML and deep learning fundamentals

    COURSE PREREQUISITES:
    We recommend that all attendees of this course have:

    • Experience using ML frameworks
    • Python programming experience
    • At least 1 year of experience as a data scientist responsible for training, tuning, and deploying models
    • AWS Technical Essentials

    COURSE CONTENT:
    Day 1
    Module 1: Amazon SageMaker Studio Setup

    • JupyterLab Extensions in SageMaker Studio
    • Demonstration: SageMaker user interface demo
    Module 2: Data Processing

    • Using SageMaker Data Wrangler for data processing
    • Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
    • Using Amazon EMR
    • Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
    • Using AWS Glue interactive sessions
    • Using SageMaker Processing with custom scripts
    • Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
    • SageMaker Feature Store
    • Hands-On Lab: Feature engineering using SageMaker Feature Store
    Module 3: Model Development

    • SageMaker training jobs
    • Built-in algorithms
    • Bring your own script
    • Bring your own container
    • SageMaker Experiments
    • Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning
    • Models
    Day 2
    Module 3: Model Development (continued)

    • SageMaker Debugger
    • Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
    • Automatic model tuning
    • SageMaker Autopilot: Automated ML
    • Demonstration: SageMaker Autopilot
    • Bias detection
    • Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
    • SageMaker Jumpstart
    Module 4: Deployment and Inference

    • SageMaker Model Registry
    • SageMaker Pipelines
    • Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
    • SageMaker model inference options
    • Scaling
    • Testing strategies, performance, and optimization
    • Hands-On Lab: Inferencing with SageMaker Studio
    Module 5: Monitoring

    • Amazon SageMaker Model Monitor
    • Discussion: Case study
    • Demonstration: Model Monitoring
    Day 3
    Module 6: Managing SageMaker Studio Resources and Updates

    • Accrued cost and shutting down
    • Updates Capstone
    • Environment setup
    • Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
    • Challenge 2: Create feature groups in SageMaker Feature Store
    • Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
    • (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
    • Challenge 5: Evaluate the model for bias using SageMaker Clarify
    • Challenge 6: Perform batch predictions using model endpoint
    • (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline

    FOLLOW ON COURSES:
    Not available. Please contact.

    Tilleggsinformasjon

    Varighet

    3 dag(er)

    Språk

    Engelsk/Norsk kursmateriell, Engelsk/Norsk kursholder

    Sted

    Virtuelt (90% av våre kurs blir tatt opp)/Vi setter opp kurs over hele landet

    Generic selectors
    Exact matches only
    Search in title
    Search in content
    Post Type Selectors
    Opplæring og sertifisering

    SG Partner AS er en ledende leverandør av et bredt spekter av opplæring og sertifisering innen Microssoft, Cisco, Prince2, Citrix, Veeam og mange flere

    • Kurs
    • Startgaranti
    • Sertifisering
    • Om oss
      • Betalingsbetingelser
      • Privacy Policy
    • Kontakt oss
    • Handlekurv
      • Min konto
    • Kurs
    • Startgaranti
    • Sertifisering
    • Om oss
      • Betalingsbetingelser
      • Privacy Policy
    • Kontakt oss
    • Handlekurv
      • Min konto
    • Epost: kurs@sgpartner.no
    • Tlf.: +47 918 34 713
    • © 2025 All rights Reserved.
    • SG Partner AS , Org. nr. 923475532